SMF-300 (POWER METER)

ASUPPLY VOLTAGES: 3 X 240.0V AC [PTR SELECTABLE]

ACURRENT INPUT: -/5Amp & -/1Amp. [SELECTABLE]

AAUXILIARY SUPPLY: 80 TO 270V AC.

ADSTANDARDS USED: STABLE AC VOLTAGE & CURRENT SOURCE, PHASE SHIFTING TRANSFORMER, POWER METER & INTEGRATOR WITH BASIC ACCURACY OF 0.35%, STANDARD ENERGY METER OF ACCURACY CLASS 0.5s TRACEABLE TO NATIONAL STANDARDS.

∆□**TRACEABILITY:** THE ABOVE METER(S) WAS TESTED AND CALIBRATED AGAINST "MTE"0.05 STANDARD (MASTER CALIBRATING INSTRUMENT) MODEL PRS 1.3.THE MTE STANDARD METER IS TRACEABLE TO INTERNATIONAL STANDARDS.

ARESULT OF TEST: Pass ATEST ENGINEER: KST A DATE: 16/07/2024

WARRANTY

THE EQUIPMENT SUPPLIED UNDER THIS T.C. IS GURANTEED AGAINST DESIGN, MANUFACTURING AND WORKMANSHIP DEFECTS FOR A PERIOD OF 12 MONTHS FROM THE ABOVE DATE. TRINITY ENERGY SYSTEMS UNDERTAKES TO REPLACE / REPAIR THE FAULTY UNIT AT OUR WORKS FREE OF COST. THE MANUFACTUR'S LIABILITY IS LIMITED TO THE VALUE OF GOODS SUPPLIED. THE MANUFACTURER WILL TAKE NO RESPONSIBILITY FOR ANY CONSEQUENTIAL DAMAGE CLAIMED WHATSOEVER. THIS WARRANTY CERTIFICTE IS REQUIRED TO BE PRODUCED FOR OBTAINING ANY REPAIR OR REPLACEMENT / SERVICE FROM THE MANUFACTURER. THE MANUFACTURING RESERVES THE RIGHT TO DETERMINE THE REASON FOR DEFECT / DAMAGE BEFORE PROVIDING SERVICE.

∧Displa	ay Parameters:									
Page 1.		Page 2.		Page 3.		Page 4.				
Phase	to Neutral Voltage	Phase t	o Phase Voltage	Phase	Current	Phase P	F			
Vrn	R Phase	Vry	RY Phase	Ir	R Phase Current	PFr	R Phase PF			
Vyn	Y Phase	Vyb	YB Phase	ly	Y Phase Current	PFy	Y Phase PF			
Vbn	B Phase	Vbr	BR Phase	lb	B Phase Current	PFb	B Phase PF			
Page 5 KWr	•	Page 6.		Page 7.	•	Page 8.				
KWr	R Phase KW	KVÄRr	R Phase KVAR	KVĀr	R Phase KVA	KVA	System KVA			
KWy	Y Phase KW	KVARy	Y Phase KVAR	KVAy	Y Phase KVA	KW	System KW			
KWb	B Phase KW	KVARb	B Phase KVAR	KVAb	B Phase KVA	PF	System PF	&	Hz	Frequency
Page 9. KVAR Svstem KVAR		Page 10.		Page 11.		Page 12				
KVÄR	System KVAR	Kwh	System Kwh	Kvarh	System Kyarh	Kvah	System Kyah			

*NOTE : LEAD side power factor indicated with minus(-) sign.

Aln ideal condition the back light will turn off after 5 min.And if any key is pressed back light will on.

A□INSTALLATION & COMMISSIONING:

- 1. Push the unit into the panel and mount using the clamps provided.
- 2. Connect the three phases with the phase sequence being R-Y-B to the corresponding terminals on the unit. Make sure that the three phases coming to the unit come through control fuses of 1.0 Amp rating. This will protect the electronics inside from damage due to sever over voltages or phase faults in the system.
- 3. In case of three phases four wire systems, connect the neutral to the terminal marked N.
- 4. Connect the two wires from the R-phase CT to terminals marked M1 & L1 such that S1 from CT goes to M1 on the unit.
- 5. Connect the two wires from the Y-phase CT to terminals marked M2 & L2 such that S1 from CT goes to M2 on the unit.
- 6. Connect the two wires from the B-phase CT to terminals marked M3 & L3 such that S1 from CT goes to M3 on the unit.
- 7. Switch on the auxiliary supply. The unit will come alive. The first parameter to be displayed will be CT Primary and then Station ID. This is displayed only once at the time of start-up of the unit and then show first page.

CHANGING CT PRIMARY:

Press the key for 10 seconds, the display will show present CT primary. Press same key to select CT Primary. At end of display page, "P" will start blinking which shows that parameter is selected for programming. Now, you can change CT Primary by pressing up or down key. The CT Primary can be changed in steps of 5A up to 200A, and in steps of 25A thereafter up to 8000A. After reaching 8000, if the key is kept in pressed condition, the CT Primary will rollover and start with 5A again. When the desired CT Primary is reached, leave the key. After 10 seconds, the meter will automatically reset and show the First PTR, Second CTRand Third STATION ID, which has been programmed, and then show page you have freeze last time when meter was in scroll mode otherwise it will show the page you have keep last time when meter was on manual mode.

CHANGING CT SECONDARY:

Press the key for 10 seconds, the display will show present <u>CT primary</u>. Now, Press key to reach CT Secondary. Now to select CT secondary Press key at end of display page, "P" will start blinking which shows that parameter is selected for programming. Now, you can change CT Secondary by pressing up or down key. When the desired CT Secondary is reached, leave the key. After 10 seconds, the meter will automatically reset and show the First PTR, Second CTR and Third STATION ID, which has been programmed,

CHANGING SCROLL MODE:

Press the key for 10 seconds, the display will show present <u>CT primary</u>. Now, Press key to reach <u>SCROLL MODE</u> status (Yes or No). Press key to select Scroll. At end of display page, "P" will start blinking which shows that parameter is selected for programming.

Now, you can change Scroll mode to YES or NO by pressing up or down key. After setting the desired Scroll Mode leave the key. After 10 seconds, the meter will automatically reset and show the First PTR, Second CT Primary and Third STATION ID, which has been programmed, and then show page you have freeze last time when meter was in scroll mode otherwise it will show the page you have keep last time when meter was on manual mode.

□ CHANGING PT RATIO:

Press the very for 10 seconds, the display will show present <u>CT primary</u>. Now, Press key to reach <u>Ptr</u>. Press very key to select parameter for programming. At end of display page, "P" will start blinking which shows that parameter is selected for programming.

Now, you can change PT Ratio by pressing up or down key. PT Ratio can be set to 1, 3.77, 4, 20, 30, 60, 100, 200, 300 or 600. When the desired PT Ratio is set, **leave the key**. After 10 seconds, the meter will automatically reset and show the First PTR, Second CT Primary and Third STATION ID, which has been programmed, and then show page you have freeze last time when meter was in scroll mode otherwise it will show the page you have keep last time when meter was on manual mode.

☐ CHANGING STATION ADDRESS:

Press the vertical parameter for programming. At end of display page, "P" will start blinking which shows that parameter is selected for programming.

Now, you can change Station Address by pressing up or down tkey. Station Address can be programmed from 1 to 255. When the desired Station Address is reached **leave the key**. After 10 seconds, the meter will automatically reset and show the First PTR, Second CT Primary and Third STATION ID, which has been programmed, and then show page you have freeze last time when meter was in scroll mode otherwise it will show the page you have keep last time when meter was on manual mode.

TRINITY ENERGY SYSTEMS PVT, LTD.

Protocol details for RS485 MODBUS communication of Trinity meter NF29.

Communication Line Parameters: 9600 / 8 / N / 1

The register map is described below. All addresses are in decimal. All parameters are Unsigned long. If illegal address is sent in the query or the host tries to read more than 32 bytes of data in one query, exception message is generated.

The parameter name (description) and multiplication factors are also mentioned. Reserved values are for future use. They are transmitted as zeroes.

3 Phase 3000 - 3019	3 phase 3030 - 3049	3 phase 3060 - 3079	3 phase 3090 - 3109	3 phase 3120 – 3139	MF
3000-KVA	3030-KWh	3060-Reserved	3090-Reserved	3120-KVA-R	X100
3002-KW	3032-KVAh	3062-Reserved	3092-Reserved	3122-KVA-Y	X100
3004-KVAr	3034-KVARh	3064-Reserved	3094-Reserved	3124-KVA-B	X100
3006-PF	3036-Hz*	3066-Reserved	3096-Reserved	3126-KW-R	X1000
3008-Avg.VLL	3038-Vry	3068-Vyb	3098-Vbr	3128-KW-Y	X100
3010-Avg.VLN	3040-Vr	3070-Vy	3100-Vb	3130-KW-B	X100
3012-Avg.Amps.	3042-Ir	3072-ly	3102-IB	3132-KVAR-R	X100
3014-KVAR-B.	3044-PF-R	3074-PF-Y	3104-PF-B	3134-KVAR-Y	X100
200-214	216-230	232-246	248-262	MF	
200-KVA	216-KVAh	232-Vb	248-KW-Y	X100	
202-KW	218-KVARh	234-Ir	250-KW-B	X100	
204-KVAr	220-HZ	236-ly	252-KVAR-R	X100	
206-PF	222-Vry	238-lb	254-KVAR-Y	X1000	
208-Avg.VLL	224-Vyb	240-KVA-R	256-KVAR-B	X100	
210-Avg.VLN	226-Vbr	242-KVA-Y	258-PF-R	X100	
212-Avg.Amps.	228-Vr	244-KVA-B	260-PF-Y	X100	
214-KWH .	230-Vy	246-KW-R	262-PF-B	X100	

Hz - Hz has a multiplication factor of 100 & not 1000 .e.g. If Hz is 48.33, then it is sent as 4833.G

□□ for providing resolution, all parameters except PF are multiplied with 100 before transmitting. Thus if the KVA value as 278.99, it is sent out as 278.99. PF has a MF of 1000, instead of 100. Thus, a PF value of 0.987 is sent as 987. For lead side PF value of 0.987 is sent as 1987. Here, 1000 is added to indicate power factor is on lead side.

If an attempt is made to read from some address other than the valid addresses, the exception response is sent.

EXCEPTION CODE

In the event that the query from the HOST has no communication error, but there is some error in specifying the address of registers to be read, the meter returns an exception message .The format of the exception message will be as Under:

STEFAN ELECTRIC

		Unit Address	0x83		Exception code	CRC	CRC	
Exception data, this	Code o	can have only one va returned.	alue: 03: If the ac	dress	is not a valid start addre	ess or host has requ	ested more than 32 t	oytes of
,								
			STE	EFA	N ELECTR	CIC		

L